Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
In this paper we explore noninvertible symmetries in general (not necessarily rational) SCFTs and their topological B-twists for Calabi-Yau manifolds. We begin with a detailed overview of defects in the topological B model. For trivial reasons, all defects in the topological B model are topological operators, and define (often noninvertible) symmetries of that topological field theory, but only a subset remain topological in the physical (i.e., untwisted) theory. For a generic target space Calabi-Yau X, we discuss geometric realizations of those defects, as simultaneously A- and B-twistable complex Lagrangian and complex coisotropic branes on X ×X, and discuss their fusion products. To be clear, the possible noninvertible symmetries in the B model are more general than can be described with fusion categories. That said, we do describe realizations of some Tambara-Yamagami categories in the B model for an elliptic curve target, and also argue that elliptic curves can not admit Fibonacci or Haagerup structures. We also discuss how decomposition is realized in this language.more » « lessFree, publicly-accessible full text available October 15, 2026
-
A<sc>bstract</sc> In this paper, we propose a construction of GLSM defects corresponding to Schubert cycles in Lagrangian Grassmannians, following recent work of Closset-Khlaif on Schubert cycles in ordinary Grassmannians. In the case of Lagrangian Grassmannians, there are superpotential terms in both the bulk GLSM as well as on the defect itself, enforcing isotropy constraints. We check our construction by comparing the locus on which the GLSM defect is supported to mathematical descriptions, checking dimensions, and perhaps most importantly, comparing defect indices to known and expected polynomial invariants of the Schubert cycles in quantum cohomology and quantum K theory.more » « lessFree, publicly-accessible full text available June 1, 2026
-
In this paper, we briefly survey some developments in gauged linear sigma models (GLSMs). Specifically, we give an overview of progress on constructions of GLSMs for various geometries, GLSM-based computations of quantum cohomology, quantum sheaf cohomology, and quantum K theory rings, as well as two-dimensional abelian and nonabelian mirror constructions.more » « lessFree, publicly-accessible full text available November 30, 2025
-
Abstract In this paper we discuss dilaton shifts (Euler counterterms) arising in decomposition of two-dimensional quantum field theories with higher-form symmetries. Relative shifts between universes are fixed by locality and take a universal form, reflecting underlying (noninvertible, quantum) symmetries. The first part of this paper constructs a general formula for such dilaton shifts, and discusses related computations. In the second part of this paper, we comment on the relation between decomposition and ensembles.more » « less
-
A<sc>bstract</sc> In this paper, we discuss how gauging one-form symmetries in Chern-Simons theories is implemented in an A-twisted topological open string theory. For example, the contribution from a fixed H/Z bundle on a three-manifold M, arising in a BZ gauging of H Chern-Simons, for Z a finite subgroup of the center of H, is described by an open string worldsheet theory whose bulk is a sigma model with target a Z-gerbe (a bundle of one-form symmetries) over T∗M, of characteristic class determined by the H/Z bundle. We give a worldsheet picture of the decomposition of one-form-symmetry-gauged Chern-Simons in three dimensions, and we describe how a target-space constraint on bundles arising in the gauged Chern-Simons theory has a natural worldsheet realization. Our proposal provides examples of the expected correspondence between worldsheet global higher-form symmetries, and target-space gauged higher-form symmetries.more » « less
-
A<sc>bstract</sc> We generalize Coulomb-branch-based gauged linear sigma model (GLSM)–computations of quantum cohomology rings of Fano spaces. Typically such computations have focused on GLSMs without superpotential, for which the low energy limit of the GLSM is a pure Coulomb branch, and quantum cohomology is determined by the critical locus of a twisted one-loop effective superpotential. We extend these results to cases for which the low energy limit of the GLSM includes both Coulomb and Higgs branches, where the latter is a Landau-Ginzburg orbifold. We describe the state spaces and products of corresponding operators in detail, comparing a geometric phase description, where the operator product ring is quantum cohomology, to the description in terms of Coulomb and Higgs branch states. As a concrete test of our methods, we compare to existing mathematics results for quantum cohomology rings of hypersurfaces in projective spaces.more » « less
-
Abstract In this paper we propose a definition of torsion refined Gopakumar–Vafa (GV) invariants for Calabi–Yau threefolds with terminal nodal singularities that do not admit Kähler crepant resolutions. Physically, the refinement takes into account the charge of five-dimensional BPS states under a discrete gauge symmetry in M-theory. We propose a mathematical definition of the invariants in terms of the geometry of all non-Kähler crepant resolutions taken together. The invariants are encoded in the A-model topological string partition functions associated to non-commutative (nc) resolutions of the Calabi–Yau. Our main example will be a singular degeneration of the generic Calabi–Yau double cover of$${\mathbb {P}}^3$$ and leads to an enumerative interpretation of the topological string partition function of a hybrid Landau–Ginzburg model. Our results generalize a recent physical proposal made in the context of torus fibered Calabi–Yau manifolds by one of the authors and clarify the associated enumerative geometry.more » « less
-
It was recently argued by Nguyen, Tanizaki and Ünsal that two-dimensional pure Yang–Mills theory is equivalent to (decomposes into) a disjoint union of (invertible) quantum field theories, known as universes. In this paper, we compare this decomposition to the Gross–Taylor expansion of two-dimensional pure [Formula: see text] Yang–Mills theory in the large-[Formula: see text] limit as the string field theory of a sigma model. Specifically, we study the Gross–Taylor expansion of individual Nguyen–Tanizaki–Ünsal universes. These differ from the Gross–Taylor expansion of the full Yang–Mills theory in two ways: a restriction to single instanton degrees, and some additional contributions not present in the expansion of the full Yang–Mills theory. We propose to interpret the restriction to single instanton degrees as implying a constraint, namely that the Gross–Taylor string has a global (higher-form) symmetry with Noether current related to the worldsheet instanton number. We compare two-dimensional pure Maxwell theory as a prototype obeying such a constraint, and also discuss in that case an analogue of the Witten effect arising under two-dimensional theta angle rotation. We also propose a geometric interpretation of the additional terms, in the special case of Yang–Mills theories on 2-spheres. In addition, also for the case of theories on 2-spheres, we propose a reinterpretation of the terms in the Gross–Taylor expansion of the Nguyen–Tanizaki–Ünsal universes, replacing sigma models on branched covers by counting disjoint unions of stacky copies of the target Riemann surface, that makes the Nguyen–Tanizaki–Ünsal decomposition into invertible field theories more nearly manifest. As the Gross–Taylor string is a sigma model coupled to worldsheet gravity, we also briefly outline the tangentially related topic of decomposition in two-dimensional theories coupled to gravity.more » « less
-
A bstract In this paper we generalize previous work on decomposition in three-dimensional orbifolds by 2-groups realized as analogues of central extensions, to orbifolds by more general 2-groups. We describe the computation of such orbifolds in physics, state a version of the decomposition conjecture, and then compute in numerous examples, checking that decomposition works as advertised.more » « less
An official website of the United States government
